Rational Solver
+1 vote
8 views
Consider the set of matrices

$$G=\left\{\left(\begin{array}{ll}s & b \\ 0 & 1\end{array}\right): b \in \mathbb{Z}, s \in\{-1,+1\}\right\}$$

Then which of the following is true?

1. $G$ forms a group under addition

2. $G$ forms an abelian group under multiplication

3. Every element in $G$ is diagonalisable over $\mathbb{C}$

4. $G$ is a finitely generated group under multiplication
in Abstract Algebra by Expert (2.4k points) | 8 views

Please log in or register to answer this question.

Welcome to Rational Solver, where you can ask questions and receive answers from other members of the community.
49 questions
8 answers
1 comment
1,546 users