Note that the matrix of given linear transformation is
$$A= \begin{bmatrix} 0 & 1 & 0 &0& \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0\\ 0 & 0 & 0 & 3 & \cdots & 0\\ \vdots& \vdots & \vdots&\ddots&\ddots&\vdots\\0 & 0 & 0 & \cdots & 0& 10\\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$
This is an upper triangular matrix with diagonal entries are zero. Thus determinant is equal to zero. Hence, option $3$ is correct.