Rational Solver
Ask us anything
Toggle navigation
Email or Username
Password
Remember
Login
Register

I forgot my password
Questions
Unanswered
Ask a Question
CSIR UGC NET June 2019 Part B Question 33
Home
Complex Analysis
CSIR UGC NET June 2019 Part B Question 33
0
votes
70
views
Let $C$ be the counterclockwise oriented circle of radius $\frac{1}{2}$ centred at $i=\sqrt{1}$. Then the value of the contourintegral $\oint_{C} \frac{d z}{z^{4}1}$ is
1. $\pi / 2$
2. $\pi / 2$
3. $\pi$
4. $\pi$
net
jun
2019
asked
in
Complex Analysis
by
Junky
Expert

70
views
Share this question
answer
comment
Your comment on this question:
Your name to display (optional):
Email me at this address if a comment is added after mine:
Email me if a comment is added after mine
Privacy: Your email address will only be used for sending these notifications.
Antispam verification:
To avoid this verification in future, please
log in
or
register
.
Add comment
Cancel
Please
log in
or
register
to answer this question.
0
Answers
Welcome to Rational Solver, where you can ask questions and receive answers from other members of the community.
All categories
WBJEEE
7
Linear Algebra
8
Calculus
3
Discrete Mathematics
10
Differential Equation
10
Functional Analysis
1
Abstract Algebra
3
Topology
1
Complex Analysis
5
Probability
5
Real Analysis
10
Anonymous
0
Chemistry
0
Physics
0
Spam
0
66
questions
23
answers
2
comments
1,801
users