Rational Solver
+1 vote
If $I=\lim _{x \rightarrow 0} \sin \left(\frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)$, then limit

(A) does not exist

(B) exists and equals 1

(C) exists and equals 0

(D) exists and equals $\frac{1}{2}$
in WBJEE 2021 by Professor | 55.4k views

1 Answer

0 votes
Best answer

$$I=\lim _{x \rightarrow 0} \sin \left(\frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)$$

Note that $\sin$ is a continuous function. Thus we have 

$$I=\lim _{x \rightarrow 0} \sin \left(\frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)=\sin \left(\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)$$

Now we calculate the limit by using L'Hopital Rule

$$\begin{aligned}\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}& = \lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1-x}{2x} && \left[ \text{Again $\frac{0}{0}$ form}\right] \\  & = \lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1}{2}  \\ &=0\end{aligned}$$

Therfore, we get $$I=\sin \left(\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)=\sin\left(0\right)=0.$$

Hence the correct option is (C).

by Professor
selected by
Welcome to Rational Solver, where you can ask questions and receive answers from other members of the community.
76 questions
33 answers
1,801 users