Rational Solver
0 votes
If $I=\lim _{x \rightarrow 0} \sin \left(\frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)$, then limit

(A) does not exist

(B) exists and equals 1

(C) exists and equals 0

(D) exists and equals $\frac{1}{2}$
in Calculus by Expert (2.1k points) | 50.9k views

1 Answer

0 votes
Best answer

$$I=\lim _{x \rightarrow 0} \sin \left(\frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)$$

Note that $\sin$ is a continuous function. Thus we have 

$$I=\lim _{x \rightarrow 0} \sin \left(\frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)=\sin \left(\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)$$

Now we calculate the limit by using L'Hopital Rule

$$\begin{aligned}\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}& = \lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1-x}{2x} && \left[ \text{Again $\frac{0}{0}$ form}\right] \\  & = \lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1}{2}  \\ &=0\end{aligned}$$

Therfore, we get $$I=\sin \left(\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-x-1-\frac{x^{2}}{2}}{x^{2}}\right)=\sin\left(0\right)=0.$$

Hence the correct option is (C).

by Expert (2.1k points)
selected by
Welcome to Rational Solver, where you can ask questions and receive answers from other members of the community.
49 questions
8 answers
1 comment
1,737 users